On the Universal Gröbner Bases of Varieties of Minimal Degree
نویسنده
چکیده
A universal Gröbner basis of an ideal is the union of all its reduced Gröbner bases. It is contained in the Graver basis, the set of all primitive elements. Obtaining an explicit description of either of these sets, or even a sharp degree bound for their elements, is a nontrivial task. In their ’95 paper, Graham, Diaconis and Sturmfels give a nice combinatorial description of the Graver basis for any rational normal curve in terms of primitive partition identities. Their result is extended here to rational normal scrolls. The description of the Graver bases of scrolls is given in terms of colored partition identities. This leads to a sharp bound on the degree of Graver basis elements, which is always attained by a circuit. Finally, for any variety obtained from a scroll by a sequence of projections to some of the coordinate hyperplanes, the degree of any element in any reduced Gröbner basis is bounded by the degree of the variety. Acknowledgment. The author would like to thank Bernd Sturmfels for suggesting a generalization of primitive partition identities.
منابع مشابه
Digital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملGröbner Bases, H–bases and Interpolation
The paper is concerned with a construction for H–bases of polynomial ideals without relying on term orders. The main ingredient is a homogeneous reduction algorithm which orthogonalizes leading terms instead of completely canceling them. This allows for an extension of Buchberger’s algorithm to construct these H–bases algorithmically. In addition, the close connection of this approach to minima...
متن کاملGröbner Basis Structure of Finite Sets of Points
We study the relationship between certain Gröbner bases for zerodimensional radical ideals, and the varieties defined by the ideals. Such a variety is a finite set of points in an affine n-dimensional space. We are interested in monomial orders that “eliminate” one variable, say z. Eliminating z corresponds to projecting points in n-space to (n − 1)-space by discarding the z-coordinate. We show...
متن کاملComprehensive Gröbner bases and von Neumann regular rings
There is a close relation between comprehensive Gröbner bases and non-parametric Gröbner bases over commutative von Neumann regular rings. By this relation, Gröbner bases over a commutative von Neumann regular ring can be viewed as an alternative to comprehensive Gröbner bases. (Therefore, this Gröbner basis is called an “alternative comprehensive Gröbner basis (ACGB)”.) In the first part of th...
متن کاملApplications of Gröbner Bases
This paper will provide a brief introduction to Gröbner bases and some of their applications: identifying and proving geometric theorems, solving coloring problems, and computing minimal polynomials.
متن کامل